PENERAPAN MODEL DATA UAV FOTOGRAMETRI UNTUK SISTEM INFORMASI GEOGRAFIS ZONA PEMANFAATAN LAHAN (Studi Kasus: Kampung Bukide Kecamatan Nusa Tabukan)

PENERAPAN MODEL DATA UAV FOTOGRAMETRI UNTUK SISTEM INFORMASI GEOGRAFIS ZONA PEMANFAATAN LAHAN (Studi Kasus: Kampung Bukide Kecamatan Nusa Tabukan)

  • Oktavianus Lumasuge Program Studi Sistem Informasi Politekknik Negeri Nusa Utara
  • Ella Israel Politeknik Negeri Nusa Utara
Keywords: UAV, Fotogrametri, GIS, Lahan, Kampung, Bukide

Abstract

Penelitian ini menghubungkan data remot sensing Unmaned Aerial Vehicle (UAV) untuk pengolahan data spasial berbasis sistem informasi geografis. Teknologi ini merupakan salah satu alternatif solusi untuk mendapatkan data lebih detil, real time, cepat dan lebih murah dibandingkan dengan penggunaan peta citra satelit. Kelebihan lain dari AUV dibandingkan foto citra satelit, AUV dalam proses pengambilan data foto udara berada pada posisi di bawah awan sehingga mampu menghasilkan data foto udara beresolusi tinggi. Hal tersebut dipengaruh oleh karena AUV tidak banyak di intervensi oleh perubahan atmotfer dibandingkan dengan foto hasil citra satelit. Proses digitalisasi menggunakan metode pengenalan objek dan segmentasi citra mengunakan perangkat lunak agissoft metashape, ArGIS10.4 dan Geomatica versi 2014. Hasil dari tahapan metode tersebut diketahui wilayah kampung bukide memiliki luas ± 143,59 ha. Luas tersebut diklasifikasikan menjadi tiga bagian yaitu tutupan lahan vegetasi 135,49 ha, area pantai 1,55 ha dan Pemukiman seluas 6,59 ha. Hasil ini diperoleh dari pengenalan citra data UAV serta pengambilan titik koordinat pada 6 bentang alam yang digunakan sebagai acuan pada proses pengenalan citra dan georefensi.

This study links remote sensing data to Unmaned Aerial Vehicle (UAV) for spatial data processing based on geographic information systems. This technology is an alternative solution to get more detailed, real time, fast and cheaper data compared to using satellite imagery maps. Another advantage of AUV compared to satellite imagery is that in the process of capturing aerial photo data, it is located under the cloud so that it can produce high-resolution aerial photo data. This was influenced by the fact that the AUV was not much intervened by changes in the atmosphere compared to satellite images. The digitization process uses object recognition and image segmentation methods using the 2014 version of Agissoft Metashape software, ArGIS10.4 and Geomatica. The results of these stages of the method show that the area of the Bukide village has an area of ± 143.59 ha. The area is classified into three parts, namely vegetation land cover of 135.49 ha, beach area of 1.55 ha and settlements of 6.59 ha. These results were obtained from the introduction of UAV data images and the taking of coordinate points in 6 landscapes which were used as references in the image recognition and georeference process.

Downloads

Download data is not yet available.

References

Aasen.H., Hongkavara.E., Lucieer. A dan Tejada. P. J. Z. (2018). Quantitative Remote Sensing at UltraHigh Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows Remote Sens. 10, 1091.Volume 10/Issue7.10.3390.

Anurogo.W, Lubis.M.Z. L, Khoirunnisa. H, Pamungkas. D.S. (2017). A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs) Journal of Applied Geospasila Information. Vol.1 No.1.

Budiyanto, E., (2016). Sistem Informasi Geografis dengan Quatum GIS, Andi Offeset, Yogyakarta.

Haala. N, Cramer, M, Weimer, F, dan Trittler, M. (2011). Performance Test on UAV-Based Photogrammetric Data Collection. International Archives of The Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII-1/C22, 7-12.

Irwansyah, E. (2013). Sistem Informasi Geografis: Prinsip dasar & Pengembangan Aplikasi. Yogyakarta: Digibooks.

J. Komarkova, J. Jech and P. Sedlak, "Comparison of Vegetation Spectral Indices Based on UAV Data: Land Cover Identification Near Small Water Bodies," 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 2020, pp. 1-4, doi: 10.23919/CISTI49556.2020.9140899.

Luo.C, Nightingale.J, ASemota.E dan Grecos.C., 2015. A UAV-Cloud System for Disaster Sensing Applications. IEE vehicular technologi conference (VTC Spring) 978-1-4799-8088-8.

Sari.N.M, Kushardono.D, (2014). Klasifikasi Penutup Lahan Berbasis Objek Pada Data Foto UAV mendukung Penyediaan Informasi Pengindraan Jauh Skala Rinci. Jurnal Pengindraan Jauh Vol.11 No.2 :114-127.

Ramadhani. Y.H, Poniman. K. A, Susanti.R., (2015). Pemetaan Pulau Kecil Dengan Pendekatan Berbasis Objek Menggunakan Data Unmaned Aerial Vehicle (UAV) Studi Kasus di Pulau Pramuka, Kepulauan Seribu. Majalah Ilmiah Globe Volume, 17(2):125-134.

Putra. A.S, Maulana.E, Rahmadana.A. D.W, Wulan. R.T, Mahendra. I.W dan Putra.M.D. (2016) Uji Akurasi Foto Udara dengan Menggunakan Data UAV pada Kawasan Padat Pemukiman Penduduk (Studi Kasus: Kawasan Padat Sayidan, Daerah Istimewa Yogyakarta)

Sample, J.E, Baber, I., Badger, R., 2016, A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services, Environmental Modelling and Software 83, 12-26.

Stojcsic.D, Somlyai. L, Molnar, A. (2013). Unmanned Aerial Vehicle Guidance Methods For 3d Aerial Image Recontruction. IEE International Confrence on Computional Cybernetics: 8-10. Mangiameli.M, Muscato.G, Mussumeci.G, Milazzo.C (2013). A GIS application for UAV flight planning. 978-3-902823-57-1/2013 ©

IFAC14710.3182/20131120-3-FR-4045.00025.

Published
2022-11-04